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ABSTRACT

Large foundation models are becoming ubiquitous, but training them from scratch
is prohibitively expensive. Thus, efficiently adapting these powerful models to
downstream tasks is increasingly important. In this paper, we study a principled
finetuning paradigm — Orthogonal Finetuning (OFT) — for downstream task adap-
tation. Despite demonstrating good generalizability, OFT still uses a fairly large
number of trainable parameters due to the high dimensionality of orthogonal matri-
ces. To address this, we start by examining OFT from an information transmission
perspective, and then identify a few key desiderata that enable better parameter-
efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm
enables efficient information transmission, we propose an efficient orthogonal
parameterization using butterfly structures. We apply this parameterization to OFT,
creating a novel parameter-efficient finetuning method, called Orthogonal Butter-
fly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized
orthogonal finetuning framework. Finally, we conduct an extensive empirical study
of adapting large vision transformers, large language models, and text-to-image
diffusion models to various downstream tasks in vision and language.

1 INTRODUCTION

Recent models such as ChatGPT [4, 9] and Stable Diffusion [73], demonstrate the remarkable
generalization ability of large foundation models. The rapid increase in the performance of such
models is paired with a dramatic increase in the number of parameters (e.g., GPT-3 has around 175B
parameters). As a result, it has become increasingly challenging for researchers to train a foundation
model from scratch. Broad progress in the field therefore requires the ability to adapt such models
without retraining them from scratch. That is, we must be able to efficiently adapt existing foundation
models to downstream tasks. There are primarily three ways to perform efficient task adaptation:
model finetuning [6, 23, 29, 67, 69, 92, 97], where the model architecture remains unchanged and a
subset of the model parameters gets finetuned; adapter tuning [24, 28, 48, 65, 71], where additional
trainable parameters are added to the original model; and prompt tuning [39, 42], where additional
trainable prefix tokens are attached to the input. Among these methods, model finetuning distinguishes
itself as a simple yet powerful approach, and more importantly, introduces no inference latency.

The fundamental principle behind model finetuning is to ensure that the pretrained model and the
finetuned model are similar based on certain measurements, such that the pretraining knowledge is
preserved. For instance, current model finetuning methods often adopt a small learning rate. This ad
hoc approach encourages a small discrepancy between the pretrained and the finetuned model. Given
the structured nature of weight matrices, a more principled approach tries to preserve the relational
information of the weight matrices, i.e. the pairwise angles between neurons. This insight leads to a
novel model finetuning framework, known as Orthogonal Finetuning (OFT) [67], where neurons in the
same layer are transformed by the same orthogonal matrix such that pairwise angles between neurons
are provably preserved throughout the finetuning process. Although OFT has demonstrated promising
generalizability and convergence for finetuning text-to-image diffusion models [67], the number of
trainable parameters in OFT can be quite large due to the high dimensionality of orthogonal matrices.
To address this, OFT introduces a block-diagonal structure to reduce the number of parameters.
However, the parameter efficiency also comes at a price — the orthogonal matrix has a fixed sparsity
pattern and the orthogonal transformation is applied independently in different blocks. This block-
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diagonal sparsity pattern, despite saving parameters, may introduce some undesirable inductive biases
(e.g., the block-diagonal orthogonal matrix reduces expressiveness and cannot approximate classic
linear transforms), and more importantly, how to find a good sparsity pattern remains a mystery.

The key to addressing this problem is to generate a dense orthogonal matrix, while still being
parameter-efficient. While this may seem infeasible at first glance since a d-dimensional dense
orthogonal matrix requires O(d?) parameters, we take a novel route to compose a dense orthogonal
matrix with multiple factorized sparse matrices. This approach is guided by the insight that the
number of trainable parameters can be reduced by trading computation time for space. Since we
represent the orthogonal matrix with the multiplication of sparse matrices, the multiplication has to
be performed repeatedly in each training iteration. To put the matrix factorization into perspective, we
interpret the generation of a dense orthogonal matrix as an information transmission problem. Under
this problem formulation, generating a dense orthogonal matrix by multiplying sparse matrices can
be understood as transmitting information on a grid-structured graph. This information transmission
framework enables us to design many possible ways to perform sparse matrix factorization that limit
the number of trainable parameters while still being expressive enough to generate dense matrices.

To achieve parameter efficiency in our information transmission framework, we draw inspiration
from the butterfly structures in the Cooley-Tukey fast Fourier transform algorithm [12] in which
information from different nodes can be exchanged efficiently [36]. Specifically, the butterfly graph in
the Cooley-Tukey algorithm inherently induces a way to perform sparse matrix factorization, called
butterfly factorization. With butterfly factorization, we are able to generate a d-dimensional dense
matrix with a product of O(log d) sparse matrices, each with O(d) non-zero entries. By ensuring
that each sparse matrix is orthogonal, we arrive at an efficient orthogonal parameterization with
only O(d log d) parameters, which is a significant reduction from the original parameterization. By
leveraging such an efficient orthogonal parameterization, we propose a novel parameter-efficient
finetuning method — Orthogonal Butterfly (BOFT). BOFT subsumes OFT as a special case and
provides a general orthogonal finetuning framework. There is a shared characteristic for the block-
diagonal structure and the butterfly structure — sparsity. Both structures introduce data sparsity into
orthogonal matrices to reduce the effective number of trainable parameters. It is interesting to contrast
our approach with the low-rank structure in LoRA [29]; both low-rank matrices and sparse matrices
are major families of structured matrices [5] that achieve parameter efficiency.

Compared to the block-diagonal structure that OFT uses to trade off expressivity and regularity,
BOFT uses the butterfly structure to construct a smoother interpolation between matrices from the full
orthogonal group (expressivity) and identity matrices (regularity). This enables us to find a smaller
hypothesis class within the orthogonal group for downstream tasks. Given the widespread use of the
butterfly structure in many fast linear transforms, such as the discrete Fourier and discrete cosine
transforms, we argue that our structured approach to parameter efficiency will introduce an implicit
inductive bias that benefits generalizability and prevents overfitting. Our intuition comes from the
property that the butterfly structure can easily recover many classic linear transforms while it is
impossible for the block-diagonal structure in OFT to recover any. Our contributions are listed below:

* We study the problem of parameter efficiency in orthogonal finetuning with a novel information
transmission framework. This framework transforms the task of crafting a parameter-efficient dense
orthogonal matrix into an information transmission problem within a grid-structured graph.

* Inspired by the butterfly structures in the Cooley-Tukey algorithm, we propose Orthogonal Butterfly,
a parameter-efficient orthogonal finetuning method, within the information transmission framework.

* We provide a few theoretical insights for why BOFT is able to significantly reduce the number of
trainable parameters while still yielding a good expressivity and training stability. Thanks to the
matrix factorization, BOFT also comes with an intriguing weight interpolation (see Figure 10).

* For the very first time, we apply orthogonal finetuning to various tasks beyond controllable text-
to-image generation [67], showing its great potential as a generic model finetuning method. To
this end, we apply BOFT to a number of adaptation applications ranging from computer vision to
natural language processing. BOFT outperforms current state-of-the-art methods by a considerable
margin, validating its superior parameter-efficiency and generalization ability.

2 RELATED WORK

Parameter-efficient finetuning (PEFT). As foundation models (e.g., [4, 35, 68, 73]) become
increasingly large and powerful, finetunig these models for downstream tasks in a parameter-efficient
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way has sparked considerable interest [18, 45, 82]. Among many PEFT methods [1, 3, 8, 10, 19,
21, 23, 24, 28-31, 33, 39, 42, 46, 49, 54, 56, 78, 79, 86, 88, 92, 98], reparameterization-based
methods [1, 19, 29] are the most relevant to our work. LoRA [29] updates the pretrained weight
matrix by adding a product of two low-rank matrices, achieving promising performance on natural
language tasks. Since the rank of all added matrices is set to a constant in LoRA, several methods
[84, 95, 97] dynamically adjust the rank for different layers such that the parameter budget is
adequately allocated. Due to its simplicity, such a low-rank weight reparameterization has gained great
popularity [6, 16, 102]. Inspired by how hyperspherical energy characterizes generalization [50, 52],
[67] proposes orthogonal finetuning, an alternative yet effective method to finetune text-to-image
diffusion models. Specifically, OFT learns an orthogonal matrix to transform the neurons of the
same layer, and it achieves stronger generalization and consistently more stable training than LoRA.
Despite strong performance, OFT generally has more trainable parameters than LoRA. Therefore,
making OFT more parameter-efficient is a useful goal. Moreover, whether OFT is applicable to
a wider spectrum of adaptation tasks (beyond controlling text-to-image diffusion models [67]) is
unknown. BOFT improves the parameter efficiency of OFT via butterfly factorization. Thanks to this,
we are now able to demonstrate the power of orthogonal finetuning in general adaptation tasks.

Butterfly structures. The radix-2 Cooley-Tukey algorithm recursively reduces the N-point discrete
Fourier transform to two %—point discrete Fourier transforms, and this process induces a butterfly
structure that can be written as a product of multiple sparse matrices (the product is also called a
butterfly matrix). Butterfly matrices have already been used to parameterize orthogonal matrices
to avoid pivoting in Gaussian elimination and improve efficiency [63], to stabilize the training of
recurrent neural networks [32] and in kernel approximation [60]. [13, 14] learn fast linear transforms
with butterfly parameterizations. [7, 15] utilize butterfly matrices to enable the efficient training of
neural networks. Butterfly structures are also found useful in fast matrix-vector multiplication [57, 61],
data-sparse matrix approximation [43], and network transmission [36, 40, 70]. In contrast to previous
work, we focus on harnessing butterfly structures to enhance the parameter efficiency of OFT.

3 AN INFORMATION TRANSMISSION VIEW ON ORTHOGONAL FINETUNING
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matrix and the frozen pretrained
weight matrix. Compared to LoRA
which updates the weights with an additive low-rank matrix, OFT uses a multiplicative orthogonal
matrix to update the weights. To achieve parameter-efficiency, LoORA uses a low-rank structure, and
in contrast, the original OFT uses a block-diagonal orthogonal structure [67] (the smaller the size of
diagonal blocks is, the more parameter-efficient OFT is). An intuitive comparison is given in Figure 1.
The motivation for applying orthogonal transformation to finetune the weight matrix is to preserve
the pair-wise angles of neurons [50, 52, 67], such that the semantic knowledge from pretraining can
be largely preserved. Concretely, OFT optimizes an orthogonal matrix R € R%* for a pretrained
linear layer W € R%*", and modifies the forward pass from z = (W) Tz to z = (RW?) Tz,
where € R? and z € R™ are the input and output vector, respectively. To achieve zero initialization,
OFT initializes R as an identity matrix. To ensure the orthogonality of R throughout the finetuning
process, we follow [52, 67] to employ Cayley parameterization, i.e., R = (I + Q)(I — Q)™ !
where Q is a skew-symmetric matrix with @ = —Q " . For parameter-efficiency, the block-diagonal
structure is introduced by parameterizing the orthogonal matrix R as diag(R;y, Ra, - - , R,) where
R; € RY*" Vi is a small orthogonal matrix and br = d. The parameter-efficiency brought by the
block-diagonal structure comes at a price — it introduces an assumption that the dimensions of a
neuron (i.e., a column vector of the weight matrix W) are divided by r groups and dimensions in
different groups are transformed separately using different orthogonal matrices. Despite the empirical
effectiveness of the block-diagonal structure, it makes no sense to divide the dimensions of a neuron
into r groups based on their indices, which makes dense orthogonal matrices desirable. A natural
question arises: Can we construct a dense orthogonal matrix without losing the parameter-efficiency?

Figure 1: A comparison of reparameterization between LoRA and OFT.

To address this question, we propose to compose a dense orthogonal matrix with a product of multiple
sparse orthogonal matrices. To provide a unified yet intuitive perspective to study the sparsity pattern
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of orthogonal matrix factorization, we frame the Level6 ~ Levels  Leveld  Level3 L°V°‘2 Le‘e“
problem of generating a dense orthogonal matrix in °

OFT as an information transmission problem. Specif- a ><:
ically, generating a dense matrix R € R%*? by a
product of m square matrices R=B,,,B,,,_1 --- B o Yg

can be viewed as transmitting information in a grid
with d x (m+1) nodes, as illustrated in Figure 2. The

motivation behind the information transmission view - B;s - B, - ..Ba B:
comes from the observation that a d-dimensional T 1 ] T .. .
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connectivity from d nodes to another d nodes. For
the matrix R, if the element R;; is zero, then it
indicates that information from the j-th node can-
not ﬁow to t'he i-th node. If R” is non-zero, then EEEE EEEE 1 BB Nonzero
the information can be transmitted. Therefore, rep- ) ) ) ) o

. . . . . Figure 2: An illustration of the information transmission view on
resentlng the dense matrix R with multlple matrices generating dense matrices. This example uses d = 4 and m = 5.
B,,B,,_1 - Bj can also be interpreted as perform-
ing sequential information exchange based on the graphs induced by B;, Vi. The information flows
following B first and B,, in the end. As a concrete example in Figure 2, we consider the factorization
R = B;B,B3;B;B; whose sparsity patterns and induced graph are visualized. The graph in Fig-
ure 2 is the result of unrolling the matrix multiplication. In the induced graph, the matrix B; is viewed
as the connectivity matrix from the i-th level nodes to the (¢ + 1)-th level nodes. More specifically, the
(j1, j2) element of B; denotes whether there is a directed edge from the jo-th node in the i-th level to
the j1-th node in the (i 4 1)-th level (zero means no edge). For B; B4 B3 Bs B; to be a dense matrix,
every node in the first level should be able to transmit information to all the nodes in the 6-th level. If
we only consider R = B, B3 B» B, which corresponds to the source nodes in the first level and the
receiver nodes in 5-th level, then we find that information from the node 1 cannot be transmitted to
the node 3. Therefore, the sparsity pattern of B, B3 BBy has a zero element at the (3, 1) position.
Considering R = B3B3 B; and R = B2 B, the same correspondence holds between the induced
graph and the sparsity pattern. Generally, for a matrix R € R?*9 to be dense, the m factorization
matrices B,,, - - , B needs to correspond to a set of directed edges ona d x (m + 1) grid where
one directed edge can only connect two nodes between adjacent levels (i.e., columns), such that
information from every node in the first level can be transmitted to every node in the (m + 1)-th level.

[ 11| Zero
HEEE EEEE

The information transmission view can help us gain a better understanding

of the sparsity pattern of factorization matrices in OFT. Figure 3 visualizes

the block-diagonal structure of R in the original OFT. Despite reducing the

number of trainable parameters, the block-diagonal structure cannot construct a e e °
a dense matrix R. Our goal is to compose a dense orthogonal matrix with
m sparse orthogonal matrices, using as few effective trainable parameters
as possible. Under the information transmission view, the general desiderata
towards our goal are (i) dense connectivity: every node in the first level has at least one path to
every node in the last level, and (7i) minimum free edges: the total number of edges should be as
small as possible under the orthogonality constraint. We note that orthogonality injects a delicate
constraint to the edges between adjacent levels. For example, for each matrix B; to be full-rank (a
necessary condition of orthogonality), we need to have d edges to form a bijection between all the
nodes in the i-th level and all the nodes in the (¢ = 1)-th level, which makes the number of edges
between adjacent levels at least d (e.g., 4 for the example in Figure 2). These d edges is necessary for
orthogonality and should not be counted into the number of edges, because these elements are not
trainable (e.g., for a d x d orthogonal with d non-zero entries, these entries can only be +1). Because
orthogonal matrices require less number of parameters than full matrices, the orthogonality constraint
will bring in additional dependency among edges. As an example, for a 2 x 2 orthogonal matrix, one
zero at the (1, 1) position will imply another zero at the (2, 2) position (i.e., one missing edge could
imply another missing edge). Therefore, for each feasible set of edge connections, the orthogonality
may sometimes add or remove some edges. By visualizing the non-zero pattern of the composed
orthogonal matrix, the information transmission framework is particularly useful in OFT, because we
only care about the non-zero trainable elements of R and their specific values do not matter.

Figure 3: An example of block-
diagonal structure in OFT.

A naive dense connection between two levels takes O(d?) edges (i.e., a single dense orthogonal
matrix), yielding d? —d edges (for d = 4, it is 12 edges). Figure 2 gives an example of a feasible matrix
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factorization and it takes 10 edges in total, which is actually less than a single dense orthogonal matrix.
This framework enables us to study the parameter-efficiency of OFT from a graphical perspective,
and we can easily come up with feasible factorizations with this framework. We draw inspiration from
an interesting topology from the Cooley-Tukey algorithm, called butterfly graphs [12], which can
densely connect d source nodes and d receiver nodes efficiently with O(d log d) edges. For example,
the topology in Figure 2 takes 10 edges to achieve dense connectivity, while the butterfly network
only takes 8 edges. Next, we introduce how the butterfly structure can improve parameter efficiency.

4 ORTHOGONAL PARAMETERIZATION BY BUTTERFLY FACTORIZATION

The butterfly structure is originally used in the Cooley-Tukey al- Level4  Level3  Level2  Levell
gorithm to perform fast Fourier transform. In Fourier transform, a
local change in the frequency domain can cause a global change in
the spatial domain, which is conceptually similar to our information
transmission problem — every node in the first level can transmit
information to all the nodes in the last level. The butterfly structure
also becomes a popular computer network topology [41, 75] used
for efficient information exchange. Assuming that k& > 2 is a power
of 2, we start by defining the butterfly factor B (k) as

~F dia d1 dia d2 kxk

B (k) = [dia§5d3§ diéEdﬂ R M
where d; € R3 ,Vi are some vectors. With d = 2%V, we then define
the d-dimensional butterfly matrix B(d) € R4*? recursively as

B(d) = B(d, d)- {Blé%) B;z%)] = B(d,0)B(d, 3) - B(d,2), @

Figure 4: The butterfly structure (d = 8).

where B (%) and By(%) are two £-dimensional butterfly matrices.
We then define the butterfly component as B(d, k)=diag(BF (k), - -- ,Bj;(k)) that is a block-
diagonal matrix of size d x d with the block size k, where B (k), Vi are butterfly factors defined in
Equation 1. Now we are ready to use the butterfly matrix to parameterize an orthogonal matrix. To
achieve this, we only need to ensure that all multiplicative factors B (d, k), ¥k in the butterfly matrix
B(d) are orthogonal. We first look into the block-diagonal matrix B(d, 2) with the block size 2, and
we can easily guarantee B(d, 2) to be orthogonal with Cayley transform (or 2-dimensional rotation)
to parameterize each block, same as [52, 67]. The non-zero pattern of every butterfly component
can be viewed as a permutation of the non-zero pattern of B (d,2), so all the butterfly components
can be easily parameterized as orthogonal matrices. This gives us an efficient parameterization of
orthogonal matrices built upon many 2 x 2 orthogonal matrices. We generalize the butterfly matrices
following [7], and define a block butterfly component B b(d, k) where each entry in d;, Vi becomes a
b x b matrix. To guarantee the block butterfly component Bb(d, 2) to be orthogonal, we parameterize
each 2b x 2b block matrix to be orthogonal. The non-zero pattern of the other butterfly components
B b(d, k), k > 2 are the block-wise permutation of the non-zero pattern of B b(d,2) and therefore
can be similarly turned into orthogonal matrices. Combining pieces, the forward pass in BOFT is

z= (R(m,b)- W°) ', s {R(W b) = [1Blusy & (Blay) Blug = Bluy(Blay) = I }

i=1

Vj€[l,m]
where we denote B®(d,2™m~+1) as Bé’ 1 for simplicity, and I, is an identity matrix of size d.
The orthogonal matrix R(m, b) € R4*? is composed of a product of multiple orthogonal butterfly
components. For convenience, we denote BOFT with R(m, g) as BOFT(m,b), where b > 2. When
m=1, then BOFT(1,b) reduces to the block-diagonal OFT [67] with the block size b. BOFT(1,d)
reduces to the original OFT [67] with an unconstrained full orthogonal matrix. BOFT(log %,b)

uses the block butterfly matrix B 3 (d) as R, and yields a dense orthogonal matrix R. In general,
BOFT(m,b) takes %(b — 1)dm effective trainable parameters for finetuning a linear layer of size d x n.
If we use the butterfly matrix, i.e., m = logd, b = 2, BOFT uses O(dlog d) parameters. In contrast,
the original OFT with a full dense orthogonal matrix uses O(d?) parameters, and the block-diagonal
OFT with the block number r uses O(bd). Therefore, the original OFT has to use the block size
b = d to generate a dense orthogonal matrix, while BOFT can use any b to achieve this.
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Identity initialization for BOFT. Finetuning methods usually start with the exact pretrained model
such that the finetuned model will not deviate too much from the pretrained one. For example, LoRA
uses zero initialization for the low-rank weights. In BOFT, we initialize all the butterfly components
with identity matrices (i.e., the skew-symmetric matrix is initialized as zeros in Cayley transform).

Multiplicative Dropout for BOFT. LoRA [29] further implements a Dropout layer for the low-rank
weight update to prevent overfitting. The conventional Dropout [77] naturally works for LoRA, but
not for BOFT due to our multiplicative weight update. To address this, we propose a multiplicative
Dropout for BOFT. Because the orthogonal matrix R(m, b) is composed of m orthogonal butterfly
components which can be easily permuted to 2b x 2b block-diagonal orthogonal matrices. The
multiplicative Dropout first randomly picks p; percent of the butterfly components and py percent of
the diagonal blocks in each butterfly component, and then replaces these blocks as identity matrices.

5 INTRIGUING INSIGHTS AND DISCUSSIONS

Expressivity of BOFT. The butterfly structure along with permutations
can perfectly recover many classic fast linear transform [13, 14] (e.g.,
fast Fourier transform, Hadamard transform), but how well our orthogo-
nal butterfly matrix can approximate a general orthogonal matrix remains

~BOFT(1.4)

BOFT(1.2) BOFT(1,16)

BOFT(9,2) ~

Scaled approximation error

unknown. We start by conducting a simulation to approximate a random 5 | | a0y | P02

dense orthogonal matrix [2] with size 512 x 512. The results in Figure 5 ~ BOFIUGI00  orr6.16)-

are averaged over 10 random seeds. The y-axis denotes the approxi-  * 0 10
Number of trainable parameters

mation error, and the x-axis denotes the number of effective trainable
parameters. Each curve with the same color denotes BOFT with the same
block size, and the leftmost point is the error of BOFT(1,b) (i.e., the original block-diagonal OFT
with block size b). BOFT generally yields better parameter efficiency than OFT. For example, the
expressiveness of BOFT(9,2) is better than that of BOFT(1,16) but has much less parameters. BOFT
with smaller b and larger m is generally more parameter-efficient. For example, BOFT(6,4) uses
much less parameters but yields a similar approximation error to BOFT(2,16). In general, the butterfly
matrix represents a more structured subset of the orthogonal group (compared to the block-diagonal
structure), which makes BOFT provably more expressive than OFT with the same block size.

Figure 5: Expressiveness of BOFT.

Theorem 1 (Expressivity of BOFT). BOFT is more expressive than OFT with the same block size.
For the butterfly matrix to approximate all orthogonal matrices of size d, we can multiply butterfly
matrices with Bg_1 1 (d)Bl;r_m(d) -+ By (d)BIQ(d), where B; ;(d),Vi,Vj are butterfly matrices.

Theorem 1 suggests a simple generalization for BOFT — the final orthogonal matrix is generalized to
RG(ml, b17 ma, bQ, l) :Rlyl(ml, bl)le:2(’fTL2, bg) e Rl,l(ml, bl)R{Q(mg, bg) WhGI'G R3:7 (m, b)
denotes the orthogonal matrix used in BOFT. When m; = mo =logd, by = by =2andl =d — 1,
then R (my, by, ma, by, ) can represent the entire orthogonal group. Such a matrix composition is
also called kaleidoscope hierarchy [14]. However, we note that better expressiveness does not always
lead to better performance in finetuning, as full finetuning, despite its universal expressiveness, often
yields unsatisfactory performance. The trade-off between expressivity and regularity is the key to the
generalizability of model finetuning. BOFT enlarges the finetuning parameter space with structural
priors, which enables us to find a better trade-off between expressivity and regularity.

Spectral properties. Orthogonal finetuning generally yields better spectral property than LoRA,
because it perfectly preserves the spectral norm of the pretrained weight matrix W0, We can see
this by singular value decomposition: W = USV T where U, V are orthogonal matrice and X is
a singular vale diagonal matrix. Both OFT and BOFT multiply an orthogonal matrix R to the left
and obtain the finetuned weights RUXV T, which does not affect the largest singular value (i.e., the
spectral norm of W9). Such a preservation has been shown to greatly benefit training stability and
generalization [58, 90]. We introduce more interesting mathematical properties in Appendix G.

Orthogonal finetuning as learning bilinear similarity. BOFT can be written as learning the bilinear
similarity w) Rz where w? is the i-th neuron (i.e., column vector) of the weight matrix W°. BOFT
can be viewed as learning the bilinear similarity matrix R with a strong regularity (i.e., R needs to
be orthogonal), which intrinsically connects to distance metric learning [89] and bilinear form [72].

Inductive bias and generalization in BOFT. Since R(m, b) in BOFT usually represents a structured
subset of the orthogonal group which constrains the hypothesis class, BOFT will naturally induce
an inductive bias. We argue that the structured inductive bias induced by butterfly factorization is
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beneficial to generalization, as it has a shared structured pattern of many classic linear transforms [14],
such as discrete Fourier transform, discrete sine/cosine transform and Hadamard transform. Moreover,
the sparse matrix factorization in BOFT may also bring some implicit inductive bias [22, 44, 51].

Comparison to butterfly-based sparse training. There are quite a few works [7, 13—15] that study
sparse training with the butterfly parameterization. They typically focus on reparameterizing the
weight matrices directly with the butterfly parameterization and training neural networks from scratch.
[15] considers to finetune the pretrained weights by first projecting the weights on a variant of butterfly
matrices and then optimizing the projected components for downstream tasks. BOFT proposes a very
different finetuning strategy that transforms the weights with layer-shared weight matrices.

6 APPLICATIONS AND EMPIRICAL RESULTS

We apply BOFT to finetune large language models (DeBERTaV3 [25], Llama-2 [81]), vision founda-
tion models (DINOv2 [62], SAM [35]), and text-to-image generative models (Stable Diffusion [73])
on various downstream tasks. To ensure a fair comparison, we use exactly the same settings for all
the compared baselines. The results are averaged over 5 random seeds, and the gains have passed
significant tests with p < 0.05. Experimental details and more results are provided in the appendices.

6.1 ADAPTATION OF LARGE LANGUAGE MODELS (LLMS)

Natural language under- Method #Param MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All
standing. To evaluate the per-  Full Finetuning  184M  89.90 95.63 69.19 92.40 9403 8375 89.46 91.60 88.25
formance of BOFT on LLLM  BitFit[92] 0.IM  89.37 94.84 6696 88.41 9224 7870 87.75 91.35 86.20

adaptation we ﬁI‘S'[ ﬁnetunea H-Adapter [28] 1.22M  90.13 95.53 68.64 91.91 94.11 84.48 89.95 9148 88.28

9

prtrined DBERTAV3-base "4 (0] 100 0% 561 877 0206 e 0 e

model [25] on the GLUE LORAr=s (291 1. 05 9495 69.82 9199 9387 85.20 89, 0088,

benchmark [87] WhiCh con- AdaLoRA [97] 1.27M 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.46
’ OFT ,—16 0.79M 90.33 96.33 73.91 92.10 94.07 87.36 92.16 9191 89.77

sists of some Trepresentative  poppm=2 (75M 9025 9644 7295 9210 94.23 8881 92.40 9192 89.89
sentence classification tasks

and is widely used for assess-
ing the natural language un-
derstanding ability [17, 25, 53]. Results are presented in Table 1. “# Param” in the table denotes
the total number of effective trainable parameters for each method. We note that OFT [67] with the
block size 16 is BOFT(1,16). One can observe that orthogonal finetuning performs better than current
state-of-the-art methods. More importantly, BOFT outperforms OFT while still using less parameters.

Table 1: Results on the GLUE development set. We report the matched accuracy for MNLI,
Matthew’s correlation for CoLA, average correlation for STS-B and accuracy for other tasks.

Massive multitask language un- Method #P: H SI"\F/IS/II\IIJ; (Sjslh 0Ot)h Avg.|H 51;4241\/1;[; (0'_Slh 0Ot)h A
. t . t . . t .
derstandmg. We use Alpaca [80] etho aram|Hums ocial er Avg.[Hums ocial er Avg
Llama-2-7B - 430 369 51.6 52.1 457| 38.8 333 46.8 450 408

as our finetuning dataset and
LoRA,—15 0.125%| 429 385 545 53.8 47.0| 425 371 515 523 455

el\ialuatifboth ZerO'Sh(;lt aﬁl/ﬁ\/fivg LoRA,_go 025% | 429 387 546 547 473|425 367 528 527 459
shot performance on the OFT p—16  0.13% | 440 380 542 543 475| 440 367 529 520 462

dataset [27] which consists Of goprm=> (150 | 445 390 544 551 479|443 374 531 528 467
57 language tasks. All methods

use the pretrained Llama-2-7B
model [81]. Results in Table 2 show a consistent improvement over LoRA, but BOFT uses fewer
parameters. Notably, BOFT(2,8) produces a block-diagonal orthogonal matrix with the block size 16,
and yet still outperforms OFT with the same block size (i.e., BOFT(1,16)) by a considerable margin.
This result implies that the butterfly structure can incorporate a generalizable inductive bias.

Table 2: Accuracy (%) on MMLU. “# Param” denotes the percentage of finetuned parameters.

Mathematical question answering. We also evaluate our method in~ Method ~ #Param GSMS8K MATH
mathematical question answering using two challenging benchmarks: = Liama-2-7B - 146 25
GSMS8K [11] and MATH [27]. For all the finetuning methods, we LoRA,_3; 025% 502 7.8
use MetaMathQA-40K [91] as the finetuning dataset, and the Llama- OFT,—16 0.13%  50.1 8.4
2-7B model [81] as the pretrained backbone. As can be observed in  BOFT st 0.12% 506 8.6
Table 3, BOFT excels in mathematical reasoning on both datasets.  Table 3: Results on GSM8K and MATH.
We note that even though improvement on the MATH dataset is in

fact quite challenging, BOFT achieves more than 10% relative improvement over LoRA while only
using half of the number of trainable parameters for LoORA. Moreover, BOFT outperforms OFT even
with the same effective block number, again verifying that the butterfly structure can introduce a
generalizable inductive bias. We also provide a case study of a few questions in Appendix E.
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Natural Specialized Structured
= - > =] o 2 g 2
=€ £ 85 £ 2 3 5|8 8% 2|f 2 ZE & & 2 B2
£ S = o @ % glg © = c° £z
Full Finetuning  304.4|67.6 91.7 77.9 99.7 93.7 92.8 52.3|88.1 96.1 90.9 77.2|167.2 59.8 58.1 82.8 83.6 62.0 36.9 39.4|74.6

Linear Probing 0 [73.2 90.9 78.1 99.7 95.2 40.3 59.3|84.2 92.9 86.8 75.6|48.1 44.4 459 65.4 25.5 37.0 18.5 30.9|62.7
BitFit [92] 0.27 [78.5 91.7 80.4 99.7 95.0 67.3 60.2(85.2 96.1 90.7 75.7|84.1 63.0 52.7 78.9 83.8 61.9 28.0 37.7|74.2
FacTtt,—16 [31] 0.12 [76.2 89.4 77.3 99.7 94.7 89.6 58.9|87.1 94.3 88.7 74.0|83.1 63.3 56.2 83.1 61.7 37.1 23.3 32.6|72.1
FacTtk,—32 [31] 0.12 [75.0 89.1 78.6 99.7 95.0 92.1 58.9|86.1 94.6 89.5 74.2|84.3 62.0 57.7 85.2 68.4 38.3 31.2 44.2|73.9
LoRA,—4[29] 1.77 |77.2 92.8 80.3 99.7 94.8 92.7 59.5|88.3 96.4 914 77.4|74.7 62.4 58.1 85.2 85.8 57.2 31.8 37.2|76.6
GLoRA,—4 [6] 4.87 |80.1 93.7 80.2 99.7 94.4 89.6 59.9(85.9 96.0 91.0 76.2|61.8 62.3 56.9 85.8 65.7 57.2 37.0 41.4|74.5

OFT p—16 2.10 [77.7 91.9 80.1 99.7 94.7 92.9 59.3(88.4 96.4 91.5 77.2[81.0 64.7 60.5 84.0 92.2 61.1 34.8 40.3]77.3
BOFT [=* 1.77 | 782 91.4 79.6 99.7 94.9 92.8 59.4|88.1 96.4 91.6 76.2(81.9 65.4 60.0 84.5 92.9 61.3 37.1 39.3|77.4
BOFT ['5° 1.11 [78.3 91.5 79.9 99.7 95.0 92.0 60.2|88.2 96.5 91.4 77.2|80.5 64.1 61.4 85.0 91.6 60.8 34.0 38.5|77.1

Table 4: Results (%) on the VTAB-1K benchmark. “# param” specifies the number of trainable parameters of each method. The average accuracy
is obtained by averaging over all 19 tasks. The best results are marked with “bold”, and the second/third best results are marked with “underline”.

6.2 ADAPTATION OF VISION FOUNDATION MODELS

Transfer learning on VTAB-1K. Model # Param DIS COIFT HRSOD  ThinObject  Average
We CValuate the ﬁnetuning perfor- mloU mBloU mloU mBIoU mloU mBIoU mloU mBIoU mloU mBIoU

mance of BOFT on the VIAB- N Ine 0 o0 @b s oo B e 9 o
1K benchmark [94], which has . - o%

HQ-SAM [34] 1.33M 78.6 704 948 90.1 93.6 86.9 89.5 799 89.1 81.8
BOFT-SAM ;_f,"::f‘ 0.04M 782 69.7 949 90.5 93.1 86.0 91.7 80.1 89.5 81.6

been extensively used to evaluate
parameter-efficient transfer learn- o
ing algorithms. VTAB-1K con- Table 5: Results on HQSeg-44K [34] (DIS [66], COIFT [47], HRSOD [93], ThinObject [471).
sists of 19 image classification tasks that are divided into three categories: natural images, specialized
tasks (e.g., remote sensing and medical images), and structured tasks (e.g., depth and orientation
prediction). In VTAB-1k, each dataset provides 800 labeled training set samples, a subset of their
original training set. We use them to fine-tune our base model and the Top-1 classification accuracy on
their respective original test set is used as the performance measure. Notably, all compared methods
introduce no inference latency, so they have the same inference speed. Because the final classification
layer will always get retrained and the trainable parameters of that linear classification layer vary
across different tasks, we follow the common practice and do not take them into account when
reporting the total trainable parameters for each method. Different from previous work [6], we use a
much larger pretrained vision transformer [62] (DINOv2-large) with more than 300M parameters.
The accuracy scores are presented in Table 4. We observe that orthogonal finetuning achieves the best
overall testing accuracy on the VTAB-1K benchmark, and BOFT with m = 4,b = 4 again achieves
the best performance. Remarkably, BOFT’s performance enhancement is both stable and consistent
across tasks, as almost all our results outperform the simplest full finetuning baseline. BOFT is
marginally worse than full finetuning on three tasks: dSpr-Ori (—0.7%), Caltech101 (—0.3%) and
sNORB-Ele (—0.1%). In contrast, LoRA is significantly worse than full finetuning on SNORB-Azim
and dSpr-Ori by 5%. These results validate the effectiveness of BOFT for vision transformers.

High-quality segmentation with SAM. The Seg-
ment Anything Model (SAM) [35] is a vision
foundation model for promptable image segmen-
tation, demonstrating impressive zero-shot capa-
bilities. SAM consists of three main components:
a pre-trained image encoder to generate a fea-
ture embedding of the input image, a prompt en-
coder to embed prompts, and a mask decoder
to map these input embeddings to a segmenta-
tion mask. Despite its impressive performance
in general image segmentation, SAM lacks the
ability to perform highly accurate segmentation
in challenging situations. To address this, HQ-
SAM [34] proposes to train an additional HQ-Output Token and a global-local feature fusion module
on a high-quality segmentation dataset, HQSeg-44K [34], to improve the mask quality, achieving
state-of-the-art performance in high-quality segmentation. Using the same dataset and loss function
as HQ-SAM, we finetune the original SAM with BOFT for 10 epochs. Specifically, we only apply
BOFT to all linear layers of the mask decoder of SAM, while keeping the other part of SAM frozen.

BOFT-SAM

W p—

Figure 6: Qualitative comparison of between SAM and BOFT-SAM.
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\

Control signal Control signal LoRA OFT BOFT

Figure 7: Qualitative comparison of controllable generation. The figure is best viewed digitally, in color and significantly zoomed in.

We compare to finetuning the entire mask decoder, training the HQ-SAM modules [34] and finetuning
linear layers with BOFT. Table 5 shows that BOFT-SAM uses only 3% of trainable parameters used
in HQ-SAM, and yet matches its performance. Moreover, since the multiplicative weights learned by
BOFT can be combined back to the weights of SAM, BOFT-SAM has exactly the same inference
speed as SAM, while, in contrast, HQ-SAM has additional modules that affect its inference speed.

6.3 CONTROLLING TEXT-TO-IMAGE DIFFUSION MODELS

Since OFT is originally used to control text-to-image diffusion mod- _Method # Param _ Error
els [67], we also evaluate BOFT with the same task for better compar-  LoRA,—12s 20.17M  8.038
ison. We finetune the pretrained Stable Diffusion [73] for two tasks: LoRA,—;s  2.52M  8.878
controllable generation (e.g., [59, 96]) and subject-driven generation  OFT ,_14 271IM 8876
(e.g., [74]). Controllable generation enables adding spatial control sig-  oFr,._, 10.50M  6.537
nals to the text-to-image diffusion models. Subject-driven generation  gorrm™=2  266M 8070
aims to synthesize images of a subject in novel contexts by finetuningon  gorr™=5  12.03M 6.387
a few images of that subject to learn a unique identifier. We follow the  poppm=1  2076M  5.667
same setting as [67] for evaluating controllable generation. To be easily Table 6. Face landmark error betuween
comparable to OFT, where the block structure is characterized by the  conirol signal and prediction.
number of blocks r, we also use the number of blocks to characterize

BOFT (instead of the block size b). Because rd = b, larger r indicates less number of parameters. For
example, for BOFT with r = 32 to generate a dense orthogonal matrix, we need to have m = 6. We
start by comparing LoRA, OFT and BOFT with a small parameter budget (less than 3M parameters).
We see from Table 6 that BOFT with » = 32, m = 2 yields significantly better performance than
both LoRA and OFT with the block number 16 under the 3M parameter budget. Under this small
budget setting, we also provide a qualitative comparison among LoRA (r = 16), OFT (r = 16) and
BOFT (r = 32, m = 2) in Figure 7. We also evaluate how BOFT performs with a dense orthogonal
matrix using r = 16, m = 5 and r = 8, m = 4. We observe that BOFT with » = 8, m = 4 achieves
the best performance and significantly outperforms LoRA with a similar number of parameters.

Finally, we conduct an ablation study on how the number of butterfly
components m affects the performance of controllable generation. We
first fix the block number as » = 32, and then vary the number of
butterfly components in BOFT from 0 (i.e., OFT with the block number
32) to 6 (BOFT with a dense orthogonal matrix). Figure 8 shows that
BOFT with a larger m yields better control performance for Stable
Diffusion finetuning. More interestingly, we also find that, with the
same number of blocks, an increased number of butterfly components
generally leads to faster and more stable convergence. This implies that
orthogonal finetuning with a denser orthogonal matrix converges faster
in finetuning text-to-image diffusion models. This also matches our intuition that a dense orthogonal
matrix can transform neurons more effectively due to its more efficient information transmission.

©w
=)

-o-OFT, =32

-6~ BOFT, r=32, m=2.
BOFT, r=32, m=4

-~ BOFT, r=32, m=6

N
G

Landmark error
5 8

(

5 10 15 20
Number of epochs

Figure 8: How m affects controllability.

BOFT also performs consistently better than both LoRA and the original OFT in subject-driven
generation. A qualitative comparison is given in Figure 9 and Appendix C. For all the compared
methods, we use the best possible hyperparameters. We empirically observe that BOFT can generally
capture more intrinsic identity characteristics of the input subject, and therefore, the generated images
are visually more plausible in terms of the subject identity preservation. We can see from Figure 9
that the original OFT also shows good performance in preserving subject identity while LoRA has
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Input images , a [V] bowl with a wheat field in the background Input images , a shiny [V] backpack
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OFT : BOFT

Figure 9: Qualitative comparison of subject-driven generation. The figure is best viewed digitally, in color and significantly zoomed in.

Control signal ~ BOFT (6 matrices) 5 matrices 4 matrices 3 matrices 2 matrices 1 matrix SD* (0 matrix)

Figure 10: Model weight interpolation by setting the trained butterfly components one by one to identity matrix. We use BOFT(m = 5, r = 16)
to finetune Stable Diffusion (SD). No retraining is performed when we gradually set each trained orthogonal matrix (B;)toan identity. The
number in the figure denotes the number of remaining orthogonal butterfly components that has not been set to identity. Text prompt: a man
with a beard smiling (for the first row) and a smiling woman (for the second row). *0 matrix is the case of SD with a learned control head.

better text prompt following ability. In sharp contrast, BOFT can achieve the best of both worlds
by simultaneously demonstrating good subject identity preservation as well as accurate text prompt
following ability. Notably, for the bottom-left toy duck case in Figure 9, we observe that BOFT can
capture the essence of the toy and generate a cubed shaped toy with a conceptually similar color.

BOFT comes with free weight interpolation. We have a surprising yet interesting discovery that
uniquely distinguishes BOFT from existing methods in controllable generation. BOFT consists of
multiple orthogonal matrices (i.e., multiple butterfly components), and the product of these matrices
gives the complete finetuned model. However, what will happen if we set the trained orthogonal
butterfly components to identity matrix one by one without retraining? If we set all the butterfly
components to identity, the model reduces to Stable Diffusion. If no butterfly components are set
to identity, then we have the full BOFT-finetuned model. After the BOFT training, the structure
of multiple butterfly components provides us with a free weight interpolation on the orthogonal
manifold. We perform the weight interpolation for all the BOFT-finetuned layers in Stable Diffusion.
Specifically, we use BOFT with m = 5,7 = 16, so we have 6 butterfly components. We set the
butterfly components one by one to identity matrix, starting from left-hand side. The results are given
in Figure 10 Surprisingly, although these interpolated weights have not been retrained, they can still
generate plausible images. In fact, as we set more butterfly components to identity, the interpolated
model produces a smooth interpolated result, from a landmark-controlled image to an uncontrolled
Stable Diffusion image. These results well validate that the hypothesis weight space (i.e., model
space) in BOFT can well preserve the semantics and effectively eliminate many bad local minima.

7 CONCLUDING REMARKS AND LIMITATIONS

Our paper proposes Orthogonal Butterfly, a generic parameter-efficient finetuning method for foun-
dation models based on the butterfly structure. The key insight to better parameter-efficiency is to
parameterize a dense orthogonal matrix with the product multiple sparse orthogonal matrices. To
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easily find feasible matrix factorizations, we propose a graphical information transmission framework.
Under this framework, we find that the butterfly structure can effectively achieve our desiderata
of sparse orthogonal matrix factorization. We demonstrate the empirical effectiveness of BOFT in
finetuning large language models, large vision models and text-to-image generative models. Our
experiments also validate the superiority of BOFT as a generic mode finetuning method.

Despite empirical effectiveness, BOFT is by no means perfect. Since the final orthogonal matrix in
BOFT is the product of multiple orthogonal matrix, the training runtime overhead is slightly larger
than OFT. How to improve BOFT’s training runtime remains an open problem. Fortunately, after the
finetuning stage, the BOFT-learned orthogonal matrices can be directly multiplied into the pretrained
model and there is no additional inference latency. Moreover, whether the butterfly network is the
most efficient way to transmit information is also unknown. Our information transmission framework
further enables us to draw inspiration from a distinct research discipline — computer networking,
where the efficiency of a network topology for transmitting information is heavily studied. We expect
that more efficient network structures can be used for composing dense orthogonal matrices.
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A EXPERIMENTAL DETAILS

A.1 NATURAL LANGUAGE UNDERSTANDING

For our experiments on the GLUE benchmark [87], we follow the setting of [97] and only tune
the learning rate, the multiplicative dropout rate, and the number of training epochs. We use the
pre-trained DeBERTaV3 [25]' as our base model and apply the OFT and BOFT to every linear layer
in every transformer blocks. All runs can be trained on a single NVIDIA A100-SXM4-80GB GPU.
See the hyperparameters used in our runs in Table 7.

Method Dataset MNLI  SST2 MRPC CoLA QNLI QQP RTE  STS-B
Batch Size 32 32 32 32 32 32 32 32
# Epochs 5 2 14 5 4 9 34 11

D"ngax é;base Learning Rate ~ 8E-05  2E-04  9E-04  4E-04 2E-04 3E-04 3E04  7E-04
OFT Dropout ~ 1E-01  1E-01  1E-01  5E-02 1E-01 1E0I 5E02  1E-0I
Max Seq. Len. 256 128 320 64 512 320 320 128
Batch Size 32 2 32 3 2 32 32 32
# Epochs 10 11 16 15 4 10 6 8

DEngTT?;’i')ba” Learning Rate ~ 7E-05  5E-05  8E-04  SE-04 2E-04 3E-04 4E-04 7E-04
OFT Dropout  15E-02  15B-02  1E-01  15B-02 SE-02 SE02 SE02  SE-02
Max Seq. Len. 256 128 320 64 512 320 320 128

Table 7: Hyperparameter setup used for DeBERTaV3-base on the GLUE benchmark.

A.2 TRANSFER LEARNING ON VTAB-1K

In our VTAB-1K experiments, we employ the DINOv2-large [62] as our base model for fine-tuning.
Our architecture design aligns with GLoRA [6], injecting trainable OFT and BOFT weights into every
linear layer in all multihead self-attention (MSA) and MLP blocks. To ensure a fair comparison, we
maintain the identical training setups for our and the baseline methods: a total number of 30 training
epochs, a fixed training batch size of 64, an AdamW optimizer, and a cosine learning rate scheduler
with a warmup ratio of 0.1. Notably, due to the supernet structure of GLoRA [6], we tested both
training for 30 and 100 epochs. We conduct a grid search on the learning rate for both our method
and baseline methods and report the best final test set’s Top-1 classification accuracy after the final
epoch. For BOFT and OFT, we additionally adopt a multiplicative dropout rate of 0.1 and apply a
weight decay rate of 0.02. All methods are trained on a single NVIDIA A100-SXM4-80GB GPU.
The exact learning rate details for OFT and BOFT can be found in Table 8.

g

= g . £ E 3 z 33

g8 = z s 25 5 2 £ 8 & g 8 8 5 2 &

= B 5] 4 = < %) 2 ] “ o 3 = 0 d [ o

& e a z z = 2 g e Z -5 3 Z = 2 5 O o

h=] < I~ = ° > 5 3 = 31 5} 2 2 = = ) 3 Z. Z.

Dataset &} 9} [a] = ¥ »n 2] 9] 4| [ [ Q a X ] =] % 7
OFT p—16 8e-4 Se-4 6e-4 2e-3 3e-4 3e-3 le-3 9e4 9e-4 Se-4 le-3 2e-4 4de-4 2e-3 le-3 2e3 3e4 4de-3 6e4
BOFT ;,"541 8e-4 5Se-4 6e-4 23 3e-4 3e-3 le-3 le-3 6e-4 9e-4 2e-3 2e4 3e4 3e-3 9e-4 4e-3 Se-4 Se-3 8e4d
BOFT ;’f.;" 8e-4 9e-4 le-3 le-3 8e-4 3e-3 le-3 4e-3 9e4 le-3 2e-3 4ded4 4de4 4e-3 3e-3 4e-3 8e4 4e-3 9e4

Table 8: Hyperparameter setup (i.e., learning rate) used for DINOv2-large on the VTAB-1K benchmark.

A.3 EXPERIMENTAL DETAILS IN LLAMA FINETUNING

In the Llama-related finetuning experiments, language understanding and mathematical question
answering, we fixed the batch size as 64 and the training epoch as 2. For all the Lora, OFT, and BOFT
experiments, we use the cosine learning scheduler and the warmup of the first 100 learning steps.
We finetune the Llama model on the first generated 512 tokens, which is sufficient for these two
tasks. We use the AdamW optimizer with a 1e-4 learning rate and 8e-4 learning rate for the language
understanding task and mathematical question-answering task, respectively. The multiplicative
dropout used for language understanding and mathematical question answering is 0.1 and 0.05,

Thttps://huggingface.co/microsoft/deberta-v3-base
Zhttps://huggingface.co/facebook/dinov2-large
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respectively. For language understanding, we evaluate the performance on MMLU with both zero-
shot and 5-shot evaluation. For mathematical question answering, we basically follow the evaluation
tools in MetaMathQA [91], where they use the Alpaca [80] prompt and evaluate the model in
zero-shot. The generation temperature is set as 0 for both tasks.

A.4 EXPERIMENTAL DETAILS IN SAM FINETUNING

We generally follow the training and evaluation settings as HQ-SAM [34]. Specifically, we use a
learning rate of 0.0005, a cosine annealing learning rate scheduler, AdamW optimizer with a weight
decay rate of 0.01 and a multiplicative dropout rate of 0.005. During fine-tuning, we keep the SAM
model [35]° frozen.

A.5 EXPERIMENTAL DETAILS IN CONTROLNET AND DREAMBOOTH

For our experiments on the ControlNet [96] and DreamBooth [74], we mainly follow the setting
of OFT [67] but re-implement them using HuggingFace’s Diffusers [85] and Parameter-Efficient
Fine-Tuning (PEFT) [55]*. Specifically, we use Stable Diffusion [73] (v2.1)’ as our pretrained model,
and DDIMScheduler [76] as our scheduler function. The attached fine-tuned PEFT layers within UNet
are {to_q, to_v, to_k, query, value, key}. Both training and testing are conducted
on NVIDIA A100-SXM4-80GB, memory efficient attention from xFormers [38] is employed. Some
specific settings for ControlNet and DreamBooth are as follows:

ControlNet We train ControlNet image encoder (lightweight 8-conv-layer network same as Con-
trolLoRA [26]) and the attached PEFT layers within UNet, with the learning rate of le-5. Regarding
the optimizer, we use AdamW with a weight decay as le-2, adam epsilon as 1e-8, and a constant learn-
ing rate scheduler. For datasets, we train Segmentation-to-Image (S2I) task on ADE20K [99, 100],
and Landmark-to-Face (L2F) task on CelebV-HQ [101], both for 20 epochs, with 16 batch size.
Specifically, we employ dropout (p; = 0.1) and {PEFT}_only bias type on PEFT layers (BOFT,
OFT, LoRA).

DreamBooth Instead of fine-tuning text transformer [20, 37], we exclusively fine-tune the cross-
attention layers (K, V, Q) of UNet with a learning rate of 3e-5, batch size of 4 for 2000 steps.
Regarding the optimizer, we use AdamW with a weight decay as le-2 and Adam epsilon as le-8,
a constant learning rate scheduler. Furthermore, we pre-generate 200 images conditioned on each
class of input images, for prior preservation training weighted by 1.0. We use the same dataset as
DreamBooth [74] with the resolution of 512. Same as ControlNet, we employ dropout (p2 = 0.1)
and {PEFT}_only bias type on PEFT layers (BOFT, OFT, LoRA).

More Results For ControlNet, apart from Landmark-to-  Task Metic | LoRA  OFT  BOFT
Face (L2F) generation, we also benchmark different fine- # Params 252M  20.89M RROGN
tuning methods on Segmentation-to-Image (S2I) generation. mboUt | 2472 2944 Quet
The quantitative results are given in Table 9. Notably, these ~ 521 mAceT | 3788 4212 4124
reported numbers represent the best possible results achieved —— ::rcocrz ZO(;;Z % :76'23
by methods, across all variations of parameter configurations ’ ; ’
(#Param spans from 2M to 20M), trained for 20 epochs. We  Table 9: Quantitative evaluation of S2T and L2F. The
observe that different control task requires different finetun- o fesuits are marked with fold, and the second
ing flexbility and some control task may be easier than the

other. We find that the S2I task is generally easier than the L2F task and does not require strong
finetuning flexibility. In the S2I task, the best performance of BOFT from 2M to 20M is similar
to that of OFT. However, BOFT can still achieve better control performance than OFT given less
amount of parameter budget, demonstrating its parameter efficiency.

More qualitative results of ControlNet are shown in Figure 17 and Figure 16. Regarding DreamBooth,
more subject-driven generations are shown from Figure 9 to Figure 15.

3https://github.com/facebookresearch/segment-anything
*https://huggingface.co/docs/peft
Shttps://huggingface.co/stabilityai/stable-diffusion-2-1
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B MORE QUALITATIVE RESULTS ON HIGH-QUALITY SEGMENTATION

SAM BOFT-SAM

BOFT-SAM

SAM

BOFT-SAM

SAM

BOFT-SAM

Figure 11: More qualitative comparison of mask prediction between SAM and BOFT-SAM.
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C MORE QUALITATIVE RESULTS IN SUBJECT-DRIVEN GENERATION

Text prompt: a [V] backpack floating on top of water

Text prompt: a [V] backpack in the snow

Input images

LoRA OFT BOFT

Figure 12: Qualitative comparison of Subject-driven Generation.
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Text prompt: a [V] vase on a cobblestone street

Input images

LoRA OFT BOFT

Figure 13: Qualitative comparison of Subject-driven Generation.
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Text prompt: a [V] glasses with a blue house in the background

Input images

LoRA OFT BOFT

Figure 14: Qualitative comparison of Subject-driven Generation.
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Text prompt: a [V] dog with a blue house in the background

= i

Text prompt: [V] stuffed animal in the jungle

Input images

LoRA OFT BOFT

Figure 15: Qualitative comparison of Subject-driven Generation.
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D MORE QUALITATIVE RESULTS IN CONTROLLABLE GENERATION

Control signal LoRA

Text prompt: a man with a beard

Text prompt: a man with a beard

Control signal

Text prompt: a man with sunglasses on

“ '

Control signal

Text prompt: a man with grey hair and beards

H iV ‘\\\ ‘ '

Control signal LoRA OFT
Text prompt: a man with long hair

Control signal

Text prompt: a man with wet hair

3 |
GT Control signal LoRA

Text prompt: a woman wearing sunglasses and holding a rose

»
7
OFT

Control signal
Text prompt: a woman wearing sunglasses and holding a rose

BOFT

Control signal LoRA OFT

Figure 16: More qualitative results in landmark-to-face generation.
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Text prompt: a house

Control signal

Control signal LoRA

Text prompt: people looking at an aquarium

GT Control signal

Text prompt: an empty room

GT Control signal LoRA OFT BOFT

Text prompt: a conference room

= ——

GT Control signal LoRA

Figure 17: More qualitative results in segmentation map-to-image generation.
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E MATHEMATICAL QUESTION-ANSWERING CASE STUDY

Example E.1: Case Study 1

Question: James buys 5 packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. How
much did he pay? (Ground-truth answer is 110)

Llama-2 Answer: James bought 5 packs of beef that are 4 pounds each. The price of beef is $5.50 per pound.
So he paid 5 * 4 * 5.50 = 137.50 dollars. The answer is 137.50.

BOFT Answer: James bought 5 packs of beef, and each pack is 4 pounds, so he bought a total of 5 * 4 =20
pounds of beef. The price of beef is $5.50 per pound, so James paid 20 * $5.50 = $110. The answer is: 110

Example E.2: Case Study 2

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total
meters does he run a week? (Ground-truth answer is 540)

Llama-2 Answer: James runs 60 meters each sprint. So he runs 60 * 3 = 180 meters each week. The answer
is 180.

BOFT Answer: James runs 3 sprints 3 times a week, so he runs 3 sprints x 3 times = 9 sprints in a week.
Each sprint is 60 meters, so James runs 9 sprints x 60 meters = 540 meters in a week. Therefore, James runs a
total of 540 meters in a week. The answer is: 540

Example E.3: Case Study 3

Question: Carl buys ten packs of cookies. Each pack of cookies has six cookies inside. Each cookie cost
$0.10. How much change does Carl receive if he pay with a $10 bill? (Ground-truth answer is 4)
Llama-2 Answer: Carl buys ten packs of cookies. Each pack of cookies has six cookies inside. Each cookie
cost $0.10. So he pays $10 for 60 cookies. Now he gets 60 * 0.10 = $6 change. The answer is $6.

BOFT Answer: Carl buys ten packs of cookies, so he buys 10 * 6 = 60 cookies.The total cost of the cookies
is 60 * $0.10 = $6.Carl pays with a $10 bill, so he receives $10 - $6 = $4 in change. The answer is: 4

Example E.4: Case Study 4

Question: Miguel uses 2 pads of paper a week for his drawing. If there are 30 sheets of paper on a pad of
paper, how many sheets of paper does he use every month? (Ground-truth answer is 240)

Llama-2 Answer: Miguel uses 2 pads of paper a week. There are 30 sheets of paper on a pad of paper. So he
uses 2 * 30 = 60 sheets of paper every week. Now he uses 60 * 4 = 240 sheets of paper every month. The
answer is 240.

BOFT Answer: Miguel uses 2 pads of paper a week, and there are 30 sheets of paper on a pad, so he uses 2
x 30 = 60 sheets of paper every week. Since there are 4 weeks in a month, Miguel uses 60 x 4 = 240 sheets of
paper every month. Therefore, Miguel uses 240 sheets of paper every month. The answer is: 240

Example E.5: Case Study 5

Question: After transferring to a new school, Amy made 20 more friends than Lily. If Lily made 50 friends,
how many friends do Lily and Amy have together? (Ground-truth answer is 120)

Llama-2 Answer: Amy made 20 more friends than Lily. So Lily had 50 - 20 = 30 friends. Amy had 30 + 20
=50 friends. So Lily and Amy have 50 + 50 = 100 friends together. The answer is 100.

BOEFT Answer: If Lily made 50 friends, and Amy made 20 more friends than Lily, then Amy made 50 + 20
=70 friends. Together, Lily and Amy have 50 + 70 = 120 friends. The answer is: 120

Example E.6: Case Study 6

Question: After Andrea saved some money, she then spent the rest of her money on an $11 sweater and gave
her brother $4. If she had $36 in the beginning, how much did Andrea save? (Ground-truth answer is 21)

Llama-2 Answer: Andrea started with 36 dollars. She then saved some money. Then she spent the rest of
her money on an $11 sweater and gave her brother $4. So she spent 36 - (saved money) - (sweater price) -
(brother price) =36 - 10 - 11 - 4 = 11 dollars. The answer is 11.

BOFT Answer: After Andrea saved some money, she then spent the rest of her money on an $11 sweater
and gave her brother $4. If she had $36 in the beginning, how much did Andrea save?Andrea saved $36 - $11
- $4 = $21Therefore, Andrea saved $21. The answer is: 21
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F PROOF OF THEOREM 1

We first show that BOFT is always more expressive than OFT with the same block size. We write
down the final orthogonal matrix in BOFT with block size 2b:

Rgorr(m,b) = [[ B®(d,2m~"1) 4
i=1

= B%d,2™)---B%(d,2) - B*(d,2")

where we can let B®(d, 2™),m € [2,m] to be identity matrices. Then we have

Rgorr(m,b) = B"(d,2™) --- B®(d,2%) -B"(d, 2)
7 4)
= B%d,2)

which is an orthogonal matrix with the block size 2b. This is exactly the orthogonal matrix used in
OFT with the block size 2b. Therefore, BOFT with m > 1 is always more expressive than OFT with
the same block size. When m = 1, BOFT reduces to OFT.

Then we proceed to prove that the following expression can represent any orthogonal matrix:
Rgy = Ba1,1(d)Bj_;5(d) -~ B11(d) B/ 5(d) ©)

where B; ;(d), Vi, V] are butterfly matrices. Ry, fall into the category of kaleidoscope matrices [14]
(with the diagonal matrix being an identity). [14] has shown that the orthogonal kaleidoscope matrix
can represent any orthogonal matrices. The overall proof idea is simple and can be given by the
following two results from [14]:

* Any orthogonal matrix can be represented by QR factorization which can be decomposed
by n — 1 Householder reflections.

* All Householder reflections can be represented by B;(d) B} (d).

Then we can easily arrive at the conclusion that Ry, can represent any orthogonal matrix.
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G MATHEMATICAL PROPERTIES OF BUTTERFLY MATRICES

Due to its nice spectral and numerical properties, butterfly structures (especially random butterfly
matrices) are introduced by [63] to remove the need of pivoting in Gaussian elimination. In this
section, we discuss a few intriguing mathematical properties of butterfly matrices. Because orthogonal
butterfly matrices are a special subset of the orthogonal matrices, they introduce additional inductive
biases that help to further regularize the finetuned model. To gain a deeper understanding of the
induced inductive biases, we delve into the mathematical properties of orthogonal butterfly matrices
with the hope to understand the effect of such additional inductive biases. We note that these properties
are natural and direct consequences of the established results in [64, 83]. For our results to be self-
contained, we also provide the brief proof of the results here.

G.1 BALANCED ENTRY-WISE LEARNING RATE

Butterfly matrices also have an interesting balanced learning rate property. We take 8-dimensional
butterfly matrix as an example. Assume that we fill all the entries in each butterfly component with 1.

m o0 0 0 1 0 0 0] 1 01 00 0O0O0O 11000 0 0 07
0100 0100 01010000 110 0 0 0 0 O
0 01 00010 101 00 00O 001 10000
0001 0001 01010000 001 10000
100 01 0 0O 00001010 00001100
01000100 0 000O0O1TCO0T1f |00O0O011O0O0
001 00010 00001010 0000 O0O0T1T1
0o o0 o010 001 (000 O0OO0OT1O01J 00000 0 1 1]

rn 1 1 1 1 1 1 17

11111111

11111111

~/r 1111111

~fr 1111111

11111111

11111111

11 1 1 1 1 1 1 1]

which means that the butterfly matrix preserves the learning rate in each entry of the butterfly
component. For block butterfly matrices, we consider the following example:

1 1 0 01 1 0 0] 1 1.1 1 0 0 0 O 2 2 2 2 2 2 2 2
110 01 1 00 11110000 2 2 2 2 2 2 2 2
0 0110011 11110000 22 2 2 2 2 2 2
001 1 0011 111 100O0O0 (2222222 2
110 0 1 1 00 0000111 1 122222222
110 0 1 1 00 0 000 1 1 11 22 2 2 2 2 2 2
001 10011 0 0001 1 11 2 2 2 2 2 2 2 2

o o1 1001 1 |00 001 1 1 1] 2 2 2 2 2 2 2 2]

which shows that the product of all-one block butterfly components still have the balanced learning
rate property. However, we also note that whenever we initialize a butterfly component, the elements
are not the same (Each butterfly component is initialized as an identity matrix). While butterfly
matrices have the property of balanced entry-wise learning rate, we note that the same property does
not necessarily exist for general sparse matrix factorization.

G.2 AN ALTERNATIVE DEFINITION OF ORTHOGONAL BUTTERFLY MATRICES

In the main paper, we define the butterfly matrices by first constructing the pattern of non-zero
elements in each butterfly component and then constraining each block matrix as an orthogonal
matrix. Alternatively, orthogonal butterfly matrices can also be defined in an reverse order by first
constructing orthogonal matrices and then build the butterfly matrix from ground up.
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Definition 1 (Generalized Rotation Matrix). A generalized rotation matrix is a N x N matrix (N is
even) of the following form:
c S
[—s C} ) (6)

where C and S are commuting, symmetric real matrices of the size % X %, and C? + 8% = I.
The scalar rotation matrices use scalar matrices C, S. The diagonal rotation matrices use diagonal
matrices C, S.

Definition 2 (Orthogonal Butterfly Matrix). An orthogonal butterfly matrix, denoted collectively as
OB(N), is an iteratively defined matrix of order N = 2™:

CA, SA,|] | C S A O 7
-SA; CAy|  |-S C| |0 Ay’ N

where A1, As € OB(%), and [_C"S, g] is a generalized rotation matrix. An orthogonal butterfly

matrix is simple if Ay = As at each iteration step, and is non-simple otherwise. When N = 1, the
orthogonal butterfly matrix is defined as 1.

Definition 3 (Diagonal and Scalar Butterfly Matrix). The diagonal and scalar butterfly matrices are
the orthogonal butterfly matrices constructed iteratively with diagonal and scalar rotation matrices,
respectively. We denote the order-N simple scalar butterfly matrices as OBs(N). For B € OB4(N),
we define B = OB(A, 0) where A = OB(%) if B is of the following form:
cos(f)A  sin(6)A| | cos()I sin(f)I| [A O
—sin(@)A cos(@)A| ~ |—sin(@)I cos()I| |0 A
1

8
_lA o0 cos(6) sin(6)I ®
|0 Al |—sin(@)I cos()I|"
We use OB(N) to denote the non-simple scalar butterfly matrices.
We also define that
OB(6) = Q) OB(n—i+1) = OB(0,) @ --- @ OB(61). )

i=1
where ® denotes the Kronecker product and OB(6;) € SO(2).

Remark 1. We note that the butterfly matrices considered in the main paper is what we define
as non-simple diagonal butterfly matrices here. Despite not directly discussing the properties of
such family of butterfly matrices, we aim to provide some useful insights through a few necessary
simplifications.

G.3 TOPOLOGICAL PROPERTIES

Proposition 1 ([64]). OB(N) and OB4(N) are compact spaces in SO(N ), which are homeomorphic
to quotients of higher dimensional tori T" and TN~ where N = 2™.

Proposition 2 ([64]). The diagonal simple and non-simple butterfly matrices are compact spaces in

SO(N), which are homeomorphic to quotients of higher dimensional tori T ~1 and TzNn (N =2"),
respectively.

These two propositions characterize the topological properties of orthogonal butterfly matrices. There
are also many interesting group properties. For example, OB;(N) is a compact abelian subgroup
of SO(N). These topological and group structures and connections provide many unique inductive
biases for the orthogonal finetuning.
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G.4 INPUT SENSITIVITY

One interesting property to study for the butterfly matrices is how the input parameter changes the
output matrix norm. Specifically, we can upper bound the difference between the input-perturbed
butterfly matrix and the original butterfly matrix. Specifically, we have the following result from [64]:

Proposition 3 (Upper Bound for Simple Scalar Butterfly Matrices). Ler OB(0) € OBs(N) and
€ € R" where N = 2". Then we have that

|OB(8) — OB(8 + €)|| » < VN [|e]; (10)

Proposition 4 (Upper Bound for General Scalar Butterfly Matrices). Let OB(0) € OB(N) and
€ € RN=1L Then we have that

|0B(6) — OB(6 +€)|p < VN — 1]l (11)
The above two propositions show that the map 8 — OB(0) is Lipshitz continuous.

G.5 RANDOM ORTHOGONAL BUTTERFLY MATRICES

Definition 4 (Random Orthogonal Butterfly Matrix). A random orthogonal butterfly matrix is a
butterfly matrix that is generated by random generalized rotation matrices with

¥:={Cj,Sj}j> (12)

which is an independent sequence of pairs of matrices. Each pair {C;, S;} generates a random
generalized rotation matrix of order 27"
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H ILLUSTRATION OF BLOCK BUTTERFLY MATRICES

We provide an illustration for block butterfly components and matrices in Figure 18.

B(16,16) B(16,8) B(16,4) B(16,2)
[ ] | | [ ] [ ] H E [ 1 ]
[ ] [ ] [ ] [ ] | I | [ | ]
| | [ ] | | [ ] H E HE
[ ] [ ] | | [ ] | I | [ ]|
[ ] [ ] [ ] [ ] H H HE
[ ] | | [ ] [ ] [ ] [ ]|
[ ] | | | | [ ] H H HE
[ ] [ ] | | [ ] H E [ | ]
[ ] | | | | [ ] H H HE
[ ] [ ] [ ] [ ] H H [ ]
| | [ ] [ ] | | HE [ 1]
[ ] [ ] [ ] [ ] HE [ ]|
[ | [ | [ ] [ | [ I | [ ] |
[ ] | | [ ] [ ] | I | [ | ]
[ | [ ] [ | | | [ ] HE
[ | [ | [ | [ | | I | [ ]|

(a) 16-dimensional butterfly matrix with the block size 1

B8,8) B(8,4) B'(8,2)
1] 1] HE  EHE
L1} L] ] L] ] L1 ]
L] L] L] L]
L] L1} HE EE
u 1]
L] ] L1} HE HE
1] 1] HE EE
L1} L] ] HE | EE
u 1] HE EE
L1} L] ] HE  EE
1] 1] HE  EE
L] ] L1} HE ~EE
1] 1] HE EE
L] ] L1} HE EE
L] L] L] L]
L] ] L] ] L] ] L] ]

(b) 8-dimensional butterfly matrix with the block size 2

B(4,4)

] ]
EEEE EEEEEEEE
(c) 4-dimensional butterfly matrix with the block size 4

Figure 18: Block butterfly components and matrices with the block size 1, 2 and 4.
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